

Forschungsförderung in der Europäischen Union

Europäische Kommission Generaldirektion Forschung & Innovation René MARTINS

Disclaimer: Diese Präsentation ist rechtlich nicht bindend und stellt keine Zusage seitens der Europäischen Kommission dar.

Research/

Horizont 2020

KETs

Aktuelle Sicherheitsforschung

EU research and innovation strategy Horizon 2020: 3 interlinked priorities

1.) Smart growth: developing an economy based on knowledge and innovation – Flagship initiative: Innovation Union

2.) Sustainable growth: promoting a more efficient, greener and more competitive economy

3.) Inclusive growth: fostering a high-employment economy delivering social and territorial cohesion

Innovation Union

A cornerstone of Europe 2020 strategy

- Globalisation of knowledge production and innovation capacities
- Impact of the crisis on public and private finance, survival of innovative SMEs
- Major challenges to address with reduced means
- \rightarrow Innovation emergency!

Key measures of Innovation Union

- Getting good ideas to market
- Access to finance
- •Single innovation market
- •Openness and creative potential

Der Kommissionsvorschlag zum Horizont 2020:

- Nanotechnologie ist unter dem Abschnitt Industrielle Führerschaft Teil des H2020 Vorschlags;
- Nanotechnologie ist eine der sechs identifizierten Schlüsseltechnologien (Key Enabling Technologies=KETs);
- Eine umfassende Herangehensweise wurde für die KETs vorgeschlagen: Querschnittsaktivitäten, die einzelne KETs miteinander kombinieren, spielen eine wichtige Rolle.;
- Gesonderte Förderung ist für Großprojekte und Demonstrationsprojekte vorgesehen;
- Es wird eine KET-eigene Steurungsstruktur geschaffen, ebenso wie ein gemeinsames Arbeitsprogramm für Querschnittsaktivitäten (multi-KETs);

•6630 Mio EUR wurden für KETs vorgeschlagen, von denen ein Anteil speziell für Querschnittsaktivitäten vorgesehen ist.

What are **KETs**

- Six strategic technologies with economic potential, contribution to solving societal challenges and knowledge intensity
 - Nanotechnologies
 - Advanced Materials
 - Micro- and nano-electronics
 - Photonics
 - Biotechnology
 - Advanced Manufacturing
- Knowledge- and Capital intensive
- Cut across many sectors

Elements of a European strategy for KETS

Horizon 2020

Excellent science

<u>Industrial leadership</u>

- > European Research Council
- Future and
- EmergingTechnologies
- Marie Curie actions
- Research infrastructures
- Leadership in enabling and industrial technologies
- Access to risk finance
- Innovation in SMEs

Societal challenges

Health, demographic change and wellbeing

Food security, sustainable agriculture, marine and maritime research & the bioeconomy

Secure, clean and efficient energy

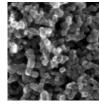
Smart, green and integrated transport

- > Climate action, resource efficiency and raw materials
- > Inclusive, innovative and secure societies

Combining several key enabling technologies for advanced products

Combining several key enabling technologies for advanced products Advanced materials

Photovoltaïc cells


Societal

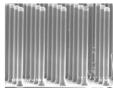
Challenge

Energy

Combating

climate change

Organic product



Microelectronics


Nanotechnologies

Photonics

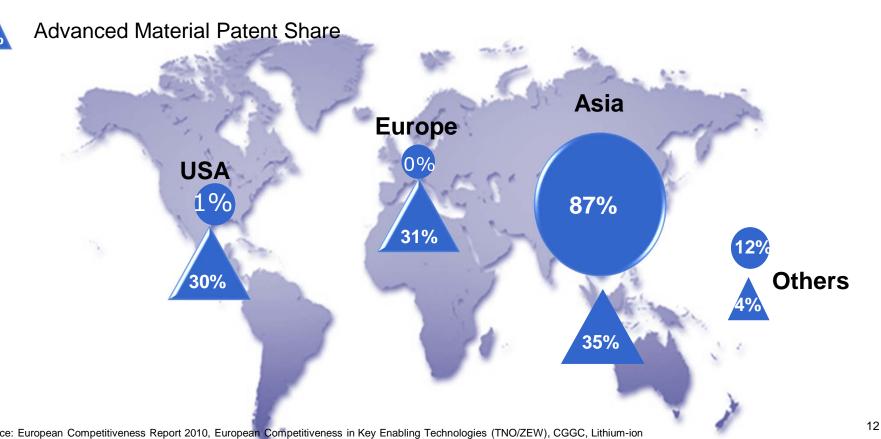
Smart meter for utility energy consumption

Si Nanowire

PV modules

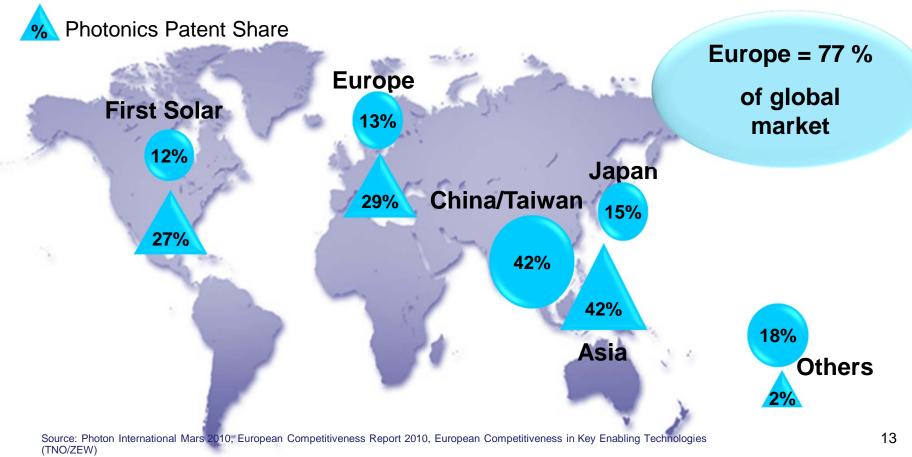
Biotechnologies By courtesy of Gabriel M. CREAN

The issues regarding KETs


- Europe has strong position in science <u>and</u> in patenting activity
- EU actors at top of patent ranking in each KET
- <u>But</u> there is a gap between the technology base and the manufacturing base
- We need to add product development (e.g. demonstrators) and competitive manufacturing to technology

Disconnection between patents share and manufacturing share Case Study: Li-ion battery production

Li-ion battery cell production share in 2008


Research,

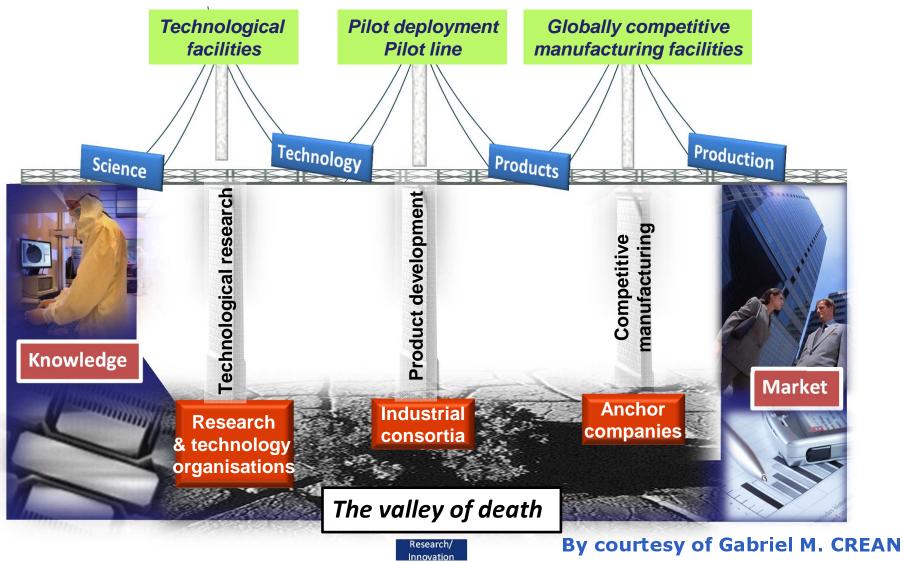
Source: European Competitiveness Report 2010, European Competitiveness in Key Enabling Technologies (TNO/ZEW), CGGC, Lithium-ion Batteries for Electric Vehicles : THE U.S. VALUE CHAIN, October 2010

By courtesy of Gabriel M. CREAN

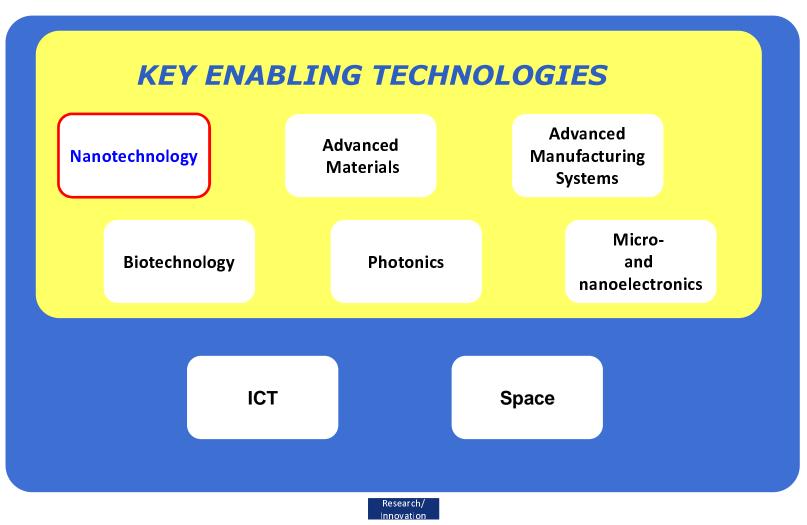
Disconnection between patents share and manufacturing share Case Study: PV Cell production

« JP Morgan, PV News, Oliver Wyman Analysis"

PV cell production share in 2009


%

By courtesy of Gabriel M. CREAN



3 - The "three pillars bridge" to pass across the "valley of death"

LEADERSHIP IN ENABLING AND INDUSTRIAL TECHNOLOGIES

NANOTECHNOLOGY – The five Enabling Programme Components

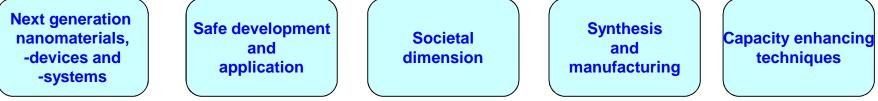
Next generation nanomaterials,-devices and-systems: Development and integration of knowledge at the cross-roads of different scientific disciplines, aiming at fundamentally new products enabling sustainable solutions in a wide range of sectors.

Safe development and application: Advancing scientific knowledge of their potential impact on health or on the environment for pro-active, science-based governance of nanotechnologies, and providing validated scientific tools and platforms for hazard, exposure and risk assessment and management along the entire life cycle of nanomaterials and nanosystems.

Societal dimension: Addressing the human and physical infrastructure needs of nanotechnology deployment and focussing on governance of nanotechnology for societal benefit.

Synthesis and manufacturing: Focusing on new flexible, scalable and repeatable unit operations, smart integration of new and existing processes, as well as upscaling to achieve mass production of products and multi-purpose plants that ensures the efficient transfer of knowledge into industrial innovation.

Capacity enhancing techniques: Focusing on the underpinning technologies, supporting the development and market introduction of complex nanomaterials and nanosystems, including characterising and manipulating matter at the nano-scale, modelling, computational design and advanced engineering at the atomic level.



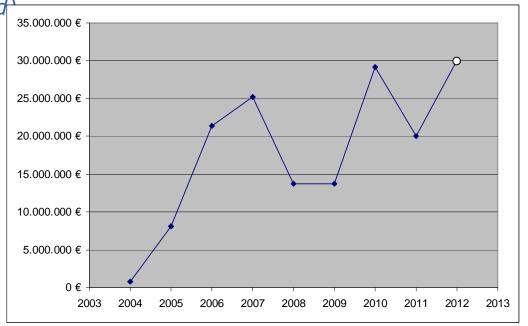
NANOTECHNOLOGY – the three main axes

Enabling Programme Components: non application specific

R&D, TRLs 1-4

Cross KET application focus areas: Application specific R&D&I

with important nanotechnology contribution, TRLs 5-8


Nanoenabled surfaces	Nanostructures and composites			
Nanotechnology innovation showcases: Applications uniquely enabled by nanotechnology, TRLs 5-8				
	Nanomedicine	Environmental technologies		

Innovation

EU RTD investment in nanosafety research

FP 6:About 31 M (13 projects completedFP 7:2007: € 25 M2008: € 14 M2009: € 14 M2010: € 29 M2011: € 20 M2012: € 30 M (estimated)Total FP7: € 106M€ EU funding(>30 projects completed orongoing)

Member States efforts to add

See also Compendium of Projects in the European NanoSafety Cluster

Research/

A snapshot on RTD level

Materials characterisation well advanced for most common nanomaterials; difficulties with variations, stability, changing environment, ageing

Hazards mostly understood; difficulties with quantification, combination, long term, special cases

Eco-toxicity has taken some delay.

Exposure monitoring advances fast to cover lost field. Unclear metrics (number, mass, surface), release from matrix, fate

Life-Cycle Analysis progresses well.

Faster progress needed for risk evaluation and risk communication Some progress marked for risk reduction

A snapshot on innovation and regulatory level

- -Materials characterisation data insufficient to underpin Risk Assessment
- -Hazards quantification not standardised, combined hazards unclear
- -Exposure monitoring and metrics reliability is low.
- -In-situ characterisation technologies needed
- -Life-Cycle Analysis data inadequate
- -Criteria for Risk evaluation/acceptance needed
- -Costs-Benefits Analysis just starting and for very few applications
- -Risk communication not really up to challenges
- -Few best practice guides published
- -International cooperation (Communities of Research)

Regulatory testing

Background

- Fast development of the market of manufactured nanomaterials
- Need to evaluate their environmental and health impacts
- Significant breakthrough research is being funded from FP7 resources but results are often inadequate for uptake by regulatory bodies.
- OECD WPMN sponsorship programme. Additional nanotoxicity data for risk assessment are needed.
- Safety concerns about some nanomaterials undermine the whole range of nanotechnology applications.
- Removing this barrier will encourage innovation.

<u>Regulatory testing of</u> <u>nanomaterials (large)</u>

Building on on-going work

Necessary to secure innovation on nanotechnologies

Aiming at providing the necessary mass of data on materials and their behaviour

Input to the OECD-WPMN

A joint action supported by public funding from EU ($\in 10M$)

Public funding or contribution of resources from MS and FP7-associated states

Private funding or contribution of resources from industry or other stakeholders

Total project size 3-5 times the EU funding

Laboratories working in network

Consortium agreement on results communication compulsory

International cooperation to be encouraged

A snapshot on market level

-Laboratories networks and certification?
-Benchmarking performances and practices?
-Regulation and implementation mechanism?
-Skills of experts and standardisation?
-Safety management services market?
-Mitigation measures assessment?
-Risk perception and transparency?

A 2013-2020 Research Strategy

• Done the last three years:

Fast development of a 3-year workplan (until end of FP7) by the cluster Building up the projects portfolio and scientists community Building up international cooperation

• Now on-going:

A vision document – <u>EU leadership in nanosafety</u> Strategy preparation launched; Official presentation in April 2012. A nanosafety research pillar

• Implementation of the strategy:

A cluster work Integration of national efforts

Preparation for risk management

A 2013-2020 Research Strategy

• The strategy must be global and comprehensive.

Vision, purpose (Long term vision ! Move away from today's obstacles !)

Goals

State of the Art (Progress and risks)

Roadmap

Evaluation (milestones)

Review (when, criteria)

Resources

Mechanisms

Accountability

Which nano-EHS strategy for Europe?

A European Technology platform is the policy instrument Nanosafetycluster is the safety pillar of nanoFUTURES Complemented by national platforms A vision document sets the goals to reach (what will be the safety requirements in 10 years?) A strategic research agenda, updated every 4-5 years, provides the strategy Implementation plan to follow Attention is due to the European situation International cooperation Standardisation and education are key elements

Useful links

Innovation Union
<u>ec.europa.eu/research/innovation-union</u>

Horizon 2020
<u>ec.europa.eu/research/horizon2020</u>

Industrial technologies
<u>ec.europa.eu/research/industrial technologies</u>

FP7 calls ec.europa.eu/research/participants/portal/page/fp7_calls

