

LGL

Analytik von Nanomaterialien

Stand der Technik, Schwierigkeiten und Perspektiven mit Fokus auf Analytik in Lebensmitteln und Lebensmittelkontaktmaterialien

Richard Winterhalter

Gliederung

Anforderungen an die Analytik von Nanomaterialien

Größe, Form, Größenverteilung, chemische Zusammensetzung

Methoden zur Charakterisierung von Nanomaterialien

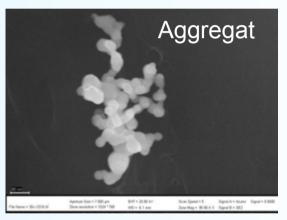
Abbildende Methoden, Lichtstreumethoden, Trennmethoden, Elementspezifische Methoden

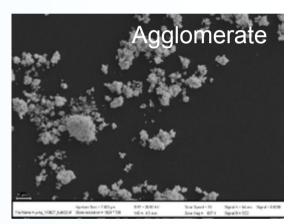
Vor- und Nachteile der verschiedenen Methoden, Grenzen, Einsatzbereich

Probenvorbereitung

Trennung der Nanopartikel von der Matrix, Dispersion der Nanopartikel

Zusammenfassung und Perspektiven


Anforderungen an die Analytik von Nanomaterialien


Was soll bestimmt werden?

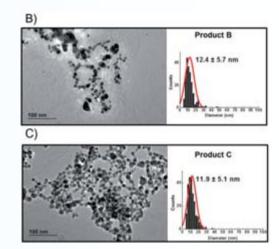
- ➤ Größe, Anzahlgrößenverteilung
- ➤ Primärpartikel, Aggregate, Agglomerate

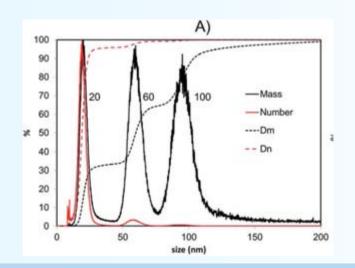
www.lgl.bayern.de

Chemische Zusammensetzung (natürlich vs. synthetisch, anorganische "harte Partikel" vs. organische "weiche Partikel" (Mizellen))

Anforderungen an die Analytik von Nanomaterialien

Methodenabhängige Größen


- Geometrischer Durchmesser (Abbildung im Elektronenmikroskop)
- ➤ Hydrodynamischer Durchmesser (D_h); Beweglichkeit der NP in Lösung (Dynamische Lichtstreuung)
- ➤ Trägheitsradius, Gyrationsradius R_q (statische Lichtstreuung)


Anforderungen an die Analytik von Nanomaterialien

Größenverteilungen

- > Anzahlverteilung
 - -kann mit Elektronenmikroskop direkt bestimmt werden
 - -Einzelpartikel-ICP-MS bei kugelförmigen Partikeln

➤ Bei anderen Methoden wird Volumenverteilung, bzw. Massenverteilung gemessen Berechnung der Anzahlverteilung bei sphärischen NP und bekannter Dichte möglich

Beide Abbildungen aus: Cascio et al. 2015: Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products, *J. Anal. At. Spectrom.* 30, 1255-1265

5

Methoden zur Charakterisierung von Nanomaterialien

Abbildende Methoden

➤ Elektronenmikroskopie (REM, TEM): Morphologie, "geometrischer" Radius, Chemische Zusammensetzung (EDX)

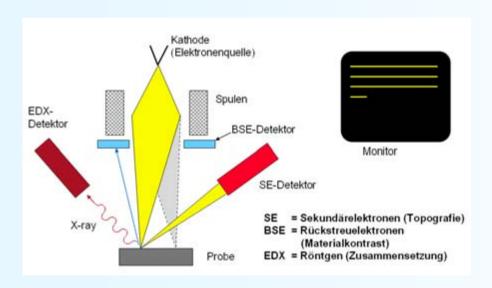
Lichtstreumethoden

- Statische Lichtstreuung (MALS): Trägheitsradius R_h
- Dynamische Lichtstreuung (DLS): Hydrodynamischer Radius R_h

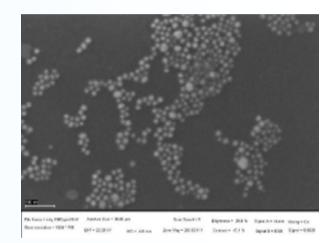
Trennung nach Partikelgröße

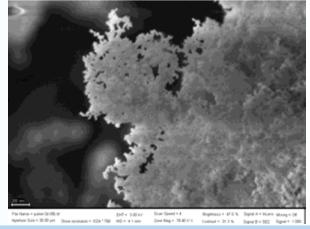
- > Feldflussfraktionierung (AFFFF, AF4)
- Scheibenzentrifuge, CLS (centrifugal liquid sedimentation)
- > Hydrodynamische Chromatographie
- Größenausschluss-Chromatographie (SEC)

Chemische Analyse mit Massenspektrometrie

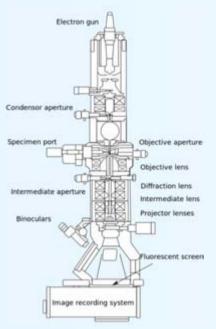

➤ ICP-MS, Einzelpartikel-ICP-MS

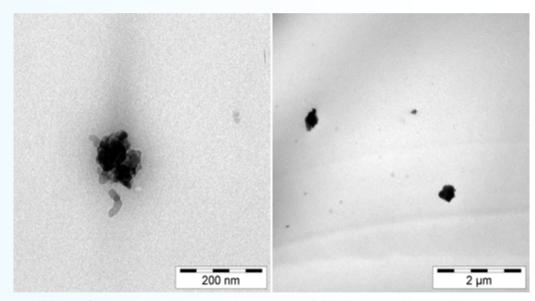
Abbildende Methoden


Rasterelektronenmikroskopie (REM, SEM)


- ➤ Morphologie, "geometrischer" Radius, Chemische Zusammensetzung (EDX)
- Unterscheidung Primärpartikel von Aggregaten
- Nachteil: Zeitaufwändig, um genügend große Anzahl Partikel (> 500) zu untersuchen für repräsentative Größenverteilung

Bildquelle: "Funktionsprinzip REM" von Salino01 aus der deutschsprachigen Wikipedia. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons



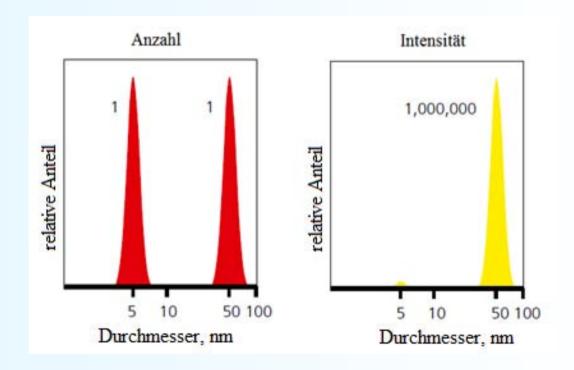

Abbildende Methoden

Transmissionselektronenmikroskopie (TEM)

- > ",geometrischer" Radius, Chemische Zusammensetzung (EDX), Auflösung < 1 nm
- Unterscheidung Primärpartikel von Aggregaten
- Nachteil: Zeitaufwändig, um genügend große Anzahl Partikel (> 500) zu untersuchen für repräsentative Größenverteilung

Bildquelle: "TEM ray diag2.basic.de". Lizenziert unter CC BY 2.5 über Wikimedia Commons

TEM-Aufnahmen von Mikrotomschnitten einer PET-Flasche mit nano-Titannitrid


Quelle: R. Franz, Fraunhofer Institut für Verfahrenstechnik und Verpackung (IVV) Freising (Projekt LENA)

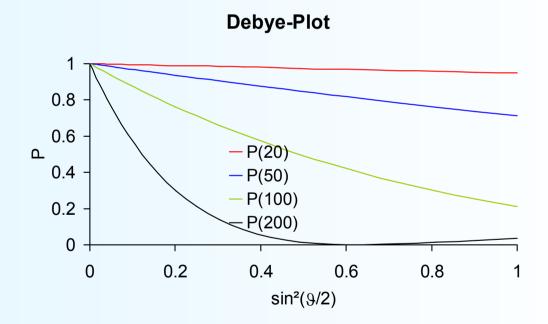
Lichtstreumethoden

Statische und dynamische Lichtstreuung

> Nachteil aller Lichtstreumethoden Lichtstreu-Intensität ~ Radius⁶, Gegenwart großer Partikel stört die Messung sehr kleiner Partikel

Bildquelle: Malvern Instruments Limited

www.lgl.bayern.de

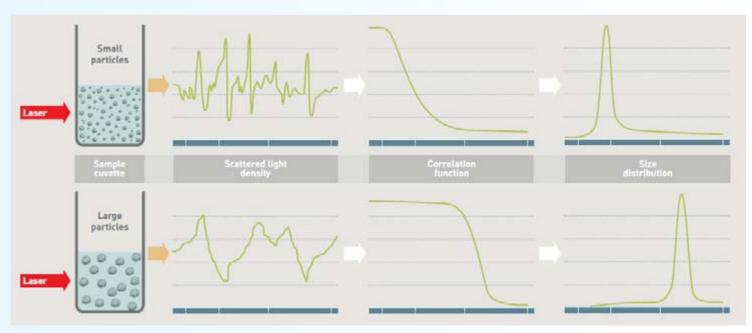


9

Lichtstreumethoden

Statische Lichtstreuung (MALS, multi angle light scattering)

- > Prinzip: Messung des Streulichts in mehreren Raumwinkeln (7 bzw. 21)
- > Kleine Partikel streuen in alle Richtungen gleich, große hauptsächlich nach vorne
- ➤ Streumassenradius, Trägheitsradius, Gyrationsradius R_q (auch <r>_q)

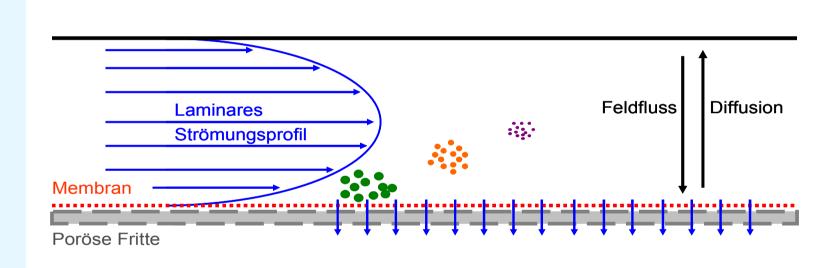


Lichtstreumethoden

Dynamische Lichtstreuung (DLS)

- > Hydrodynamischer Durchmesser
- Messung der zeitlichen Veränderungen des von Partikeln gestreuten Lichts. Anhand der Geschwindigkeit der Fluktuation der Helligkeitspunkte kann die Partikelgröße abgeleitet werden.
- ➤ Messbereich: Partikelgrößen im Bereich von 5 nm bis µm-Bereich
- > Funktioniert nur verlässlich bei monodispersen Größenverteilungen

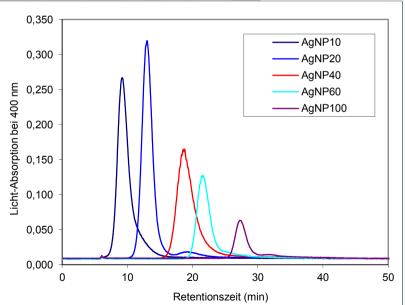
Bildquelle: Malvern Instruments Limited



Trennmethoden

Feldflussfraktionierung (FFF), z.B. asymmetrischer Fluss-FFF (AF4)

- Kontaktlose Trennmethode, FFF-Theorie
- > Hydrodynamischer Durchmesser

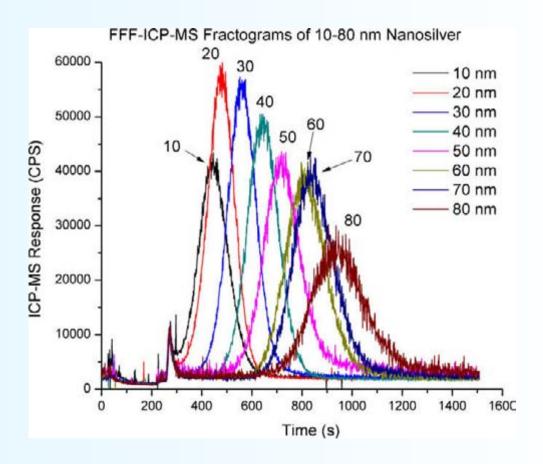

- > Mit unterschiedlichsten Detektoren koppelbar: UV-VIS, MALS, DLS, ICP-MS
- > Fraktionen können gesammelt werden für off-line-Analyse
- > Grenzen/Nachteile: rel. zeitaufwändig, Wechselwirkung von Partikeln mit Membran möglich


Trennmethoden

asymmetrischer Fluss-FFF (AF4) Beispiel Nanosilber (10, 20, 40, 60, 100 nm) Bestimmung der Größe über Retentionszeit

Kalibrierkurve Partikelgröße vs. Retentionszeit

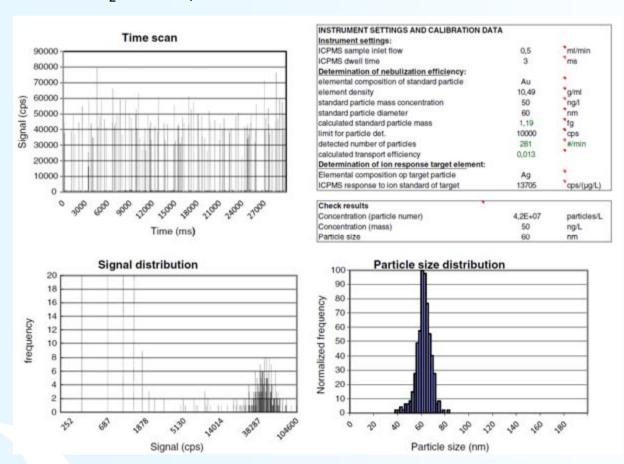
Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS)


Eigenschaften der ICP-MS

- > Ionisierung der Elemente durch Argon-Plasma
- > Bestimmung der Masse der Ionen
- Besonders gut geeignet für metallische NP wie Ag, Au, (TiO₂, SiO₂)
- Gleichzeitige Bestimmung mehrerer Elemente möglich
- Niedrige Nachweisgrenze (μg/L bis ng/L) (ppb bis ppt)
- Grenzen/Nachteile: isobare Störungen (z.B. ⁴⁸Ca und ⁴⁸Ti) (kann mit hochauflösenden Geräten (Sektorfeld-ICP-MS) kompensiert werden)

ICP-MS Methoden

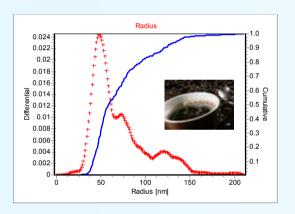
Als Online-Detektor für Feldflussfraktionierung (FFF-ICP-MS)

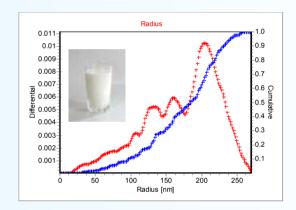

Poda et al. 2011, Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry, *J Chromatography A*, 1218, 4219–4225

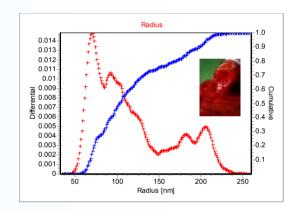
ICP-MS Methoden

Einzelpartikelanalyse (SP-ICP-MS)

- ➤ Hochverdünnte Lösungen, jedes NP erzeugt ein Signal, Intensität ~ NP-Masse (Durchmesser)
- Nachweisgrenze, kleinste Partikelgröße abhängig vom Hintergrundsignal des Elements (Ag, TiO₂ >20 nm, SiO₂ > 30 nm)


Peters et al., 2014: Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. *Anal. Bioanal. Chem.* **406**, 3875-3885




Probevorbereitung

Problem: Vielzahl natürlicher Nanopartikel in Lebensmitteln

- > Wie kann man natürliche von synthetischen Nanopartikeln unterscheiden?
- > Probevorbereitung: Trennung von Matrix

Probevorbereitung

Nur die Matrix soll aufgelöst werden, die NP dürfen sich nicht verändern!

Säureaufschluss (z.B. konz. HNO₃, H₂O₂)

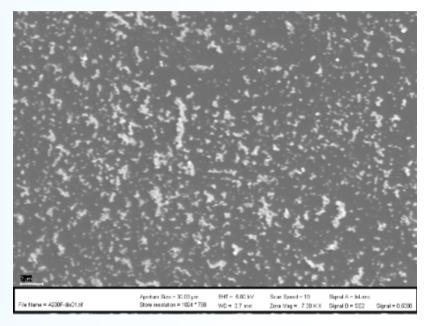
- ➢ Geeignet für TiO₂, SiO₂
- > Analyse mit AF4-ICP-MS, SP-ICP-MS

Peters et al. 2014, *J. Agric. Food Chem.*, 62, 6285-6293 Wagner et al 2015, *J. Anal. At. Spectrom.* 30, 1286-1296

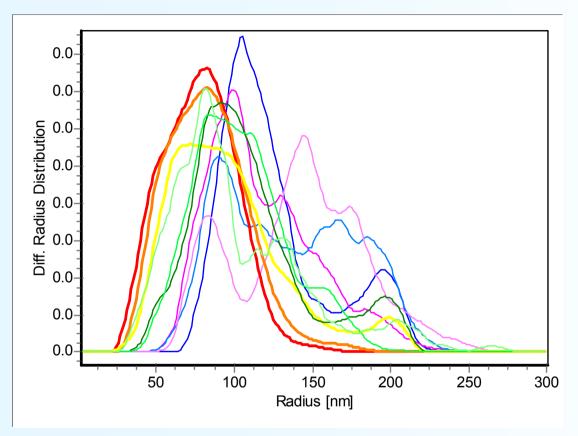
Enzymatische Verdauung bei Nanosilber

- Nanosilber in Hühnerfleisch
- Verdauung mit Enzym Proteinase K
- > Analyse mit SP-ICP-MS

Peters et al., 2014: Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. *Anal. Bioanal. Chem.* **406**, 3875-3885


Probevorbereitung

- Unterscheidung von Aggregaten und Agglomeraten
- ➤ Dispersion (Homogenisierung) der Nanopartikel


Aerosil 200 unbehandeltes Pulver

Aerosil 200 in Wasser nach Ultraschallbehandlung

Probenvorbereitung: Dispersion (Homogenisierung)

3 Methoden getestet:

Ultra-Turrax
Ultraschallbad
Ultraschallsonotrode

Einfluss der Dispergiermethode auf Größenverteilung

Sonotrode: Fett: gelb (1 min), orange (5 min), rot (10 min)

Ultraschallbad: Hellgrün (1 min), mittelgrün (5 min) dunkelgrün (10 min) **Ultraturrax:** rosa (1 min) violett (5 min) hellblau (1 min) dunkelblau (5

min)

Herstellung von Referenzmaterial für Lebensmittel und Methodenvalidierung

Nanosilber (60 nm) in Hühnerfleisch

- Zugabe von 5 bis 25 mg/kg Nanosilber zu homogenisierter Hühnerbrust
- Verdauung mit Enzym Proteinase K
- Analyse mit SP-ICP-MS, Detektionslimit 0,05 mg/kg

Validierung	Partikelgröße	Konzentration
Richtigkeit	98-99%	91-101%
Standardabweichung	0,8-1,8%	6,7-11%

Peters et al., 2014: Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. *Anal. Bioanal. Chem.* **406**, 3875-3885

SiO₂ in Tomatensuppe

- > Zugabe von 5 g/kg pyrogener Kieselsäure (Aerosdisp, Evonik) zu frisch gekochter Tomatensuppe
- Analyse mit AF4-ICP-MS, AF4-MALS

Grombe et al. 2014: Production of refence materials for the detection and size determination of silica nanoparticles in tomato soup, *Anal. Bioanl. Chem*, 406, 3895-3907

Wagner et al 2015: First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection characterization, and quantification by AF4-MALS and ICP-MS, *J. Anal. At. Spectrom.* 30, 1286-1296

Zusammenfassung

- ➤ Zahlreiche analytische Verfahren zur Charakterisierung von NP vorhanden, die allerdings methodenabhängige Größen liefern: Elektronenmikroskopie, Lichtstreuung, Trennmethoden, ICP-MS
- ➤ Kombination mehrerer Methoden für vollständige Charakterisierung nötig
- ➤Im unteren Bereich der Partikelgrößen sind die meisten Methoden limitiert
- ➤ Herausforderung der Probenaufbereitung, ohne die NP zu verändern: Abtrennung von Lebensmittelmatrix, Einfluss der Homogenisierung auf Größenverteilung

>Perspektiven:

-erste vielversprechende Ergebnisse des Projekts "Nanolyse" bzgl. Methodenentwicklung, Referenzmaterialien und Validierung -weitere Referenzmaterialien für andere Lebensmittel müssen entwickelt und entsprechende Methoden der Probeaufbereitung gefunden werden -ein breiteres Spektrum zertifizierter NP-Referenzmaterialien, insbesondere unterschiedliche Partikelgrößen zur Kalibrierung, wäre hilfreich

Informationsquellen

EU-Projekt NanoLyse (2010-2012)

Ziel: Entwicklung analytischer Methoden zur Detektion und Charakterisierung synthetischer Nanopartikel in Lebensmitteln. http://www.nanolyse.eu/

Literatur:

JRC Institute for Reference Materials and Measurements (IRMM) 2012: Requirements on measurement for the implementation of the EC definition of the term "nanomaterial" http://publications.jrc.ec.europa.eu/repository/handle/JRC73260

Linsinger et al. 2013: Validation of methods for the detection and quantification of engineered nanoparticles in food. *Food Chemistry* 138, S. 1959-1966

